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Abstract—In deploying body sensor networks (BSNs), sampling
rates might be dynamically tuned to fit application requirements
(e.g., monitoring patients’ different activities), which helps con-
serving energy for battery-powered sensors. However, this results
in variable data rates among sensors, which further requires
an efficient resource allocation to maintain reliable transmis-
sion accommodating all traffic loads. We thereby address this
joint problem of transmission reliability and energy efficiency,
by proposing a BSN system that autonomously detects user
behaviors, which in turn trigger dynamic sampling and resource
scheduling via an adaptive MAC scheduling scheme. This cross-
layer scheme uses time-slotted channel hopping (TSCH) in IEEE
802.15.4, which is a reliable low-power MAC protocol. Specifi-
cally, the proposed solution determines the best TSCH slotframe
length for specific application requirements, the number of
timeslots to be added/removed according to dynamic sampling
rates, and then allocates timeslots via an equally spaced timeslot
allocation algorithm. We implement our proposed approach on
a BSN testbed, which features both state-of-the-art hardware
and software architecture. Experimental results are conducted
to evaluate our proposed solution in terms of throughput, packet
delivery ratio, and energy per bit, which demonstrates that our
cross-layer solution ensures reliable data transmission and energy
efficiency compared to existing techniques.

Index Terms—Body sensor networks (BSN), adaptive schedul-
ing, media access control (MAC), time slotted channel hopping
(TSCH), IEEE 802.15.4.

I. INTRODUCTION

BODY sensor network (BSN) is a promising platform for
efficient, low-cost, and comfortable healthcare monitor-

ing systems, with such applications as monitoring the daily
conditions of a patient, and providing support for elderly
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people [2]. Among many low-power wireless communications
standards, IEEE 802.15.4 is widely adopted in BSNs for
healthcare applications [1], [3]–[5]. In recent years, a great
deal of research has focused on medium-access control (MAC)
for BSNs to improve energy efficiency, and prolong battery life
of wearable sensors. MAC protocols of IEEE 802.15.4 [6] are
mainly categorized into two methods, i.e., contention-based
and schedule-based protocols. Even though the contention-
based method, based on carrier-sense multiple access with
collision avoidance (CSMA-CA), is traditionally utilized in
many BSN systems [4], [5], [7], it faces several problems
such as multi-path fading and interference from other devices
using the same 2.4 GHz band [4], [8]. Instead of using only
a single channel for communication as in CSMA-CA, an
alternative MAC protocol called time-slotted channel hopping
(TSCH) has been introduced in the latest revision of IEEE
802.15.4 [6] (published 2015). TSCH protocol, which is based
on time-slotted access, provides deterministic latency for ap-
plications and mitigates the effects of interference. Moreover,
when combining with channel-hopping mechanism, TSCH can
reduce multi-path fading, ensuring reliability of wireless com-
munications in the presence of other devices using 2.4 GHz.
As such, TSCH is well-suited for monitoring applications
where sensors transmit data periodically, in proximity to other
wireless systems. While TSCH has been gradually adopted
in many IoT applications [9]–[11], it is mostly employed for
very low data rates (typically one or two packets per minute)
compared to patient monitoring which requires sensors to
dynamically sample and transmit back to gateway (i.e., the
sending rate) at several times per second. To the best of our
knowledge, there has not been any research on using TSCH for
health-monitoring BSNs under such a high date rate constraint,
besides our earlier paper [1].

A challenge of health-monitoring applications with high
data rate constraints is that sensors’ batteries will be used
up quickly due to intensive sampling and communication
workload, thus necessitating energy and workload reduction
through adaptive sampling driven by user’s behaviors [12].
Consider, for example, monitoring a heart disease patient
undergoing cardiac rehabilitation with battery-powered elec-
trocardiogram (ECG) sensors on the patients body. Instead of
sampling data at frequent fixed intervals, resulting in waking
up too often and unnecessary energy usage, the ECG can
take measurements at a low sampling rate when the patient
is sedentary with a low risk of a heart attack or cardiac event.
However, when the patient exhibits a more vigorous behavior
with higher risk of a cardiac event, the ECG can switch to
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a higher sampling rate, so that high-resolution data can be
collected for more complex analysis, to provide more accurate
observations or predictions. Thus, incorporating an adaptive
sampling rate mechanism [1], [12] to BSNs provides several
benefits, where we may wish to expend more energy only
when high-resolution sensor data is necessary. Similar to [12],
we use human activities as the basis for user behaviors 1 to
map with different sampling rates. Leveraging results in human
activity recognition (HAR) which is a basic application of
BSNs [13], [14], we build a dynamic sampling rate mechanism
for different types of healthcare sensors according to specific
application requirements.

The default TSCH of IEEE 802.15.4 [6] does not efficiently
handle dynamic network traffic loads [9]–[11] which are
generated from sensors’ adaptive sampling rates. To tackle this
issue, an adaptive MAC scheduling scheme will be proposed.
Given the available user behaviors extracted from application
layer (i.e., HAR) which are then mapped to various corre-
sponding sampling rates for sensors, the proposed scheme will
simultaneously change sampling rates of the sensors and dy-
namically schedule the transmissions in MAC layer based on
new traffic demands generated by the new sampling rates. The
detailed MAC layer scheduling, on top of the TSCH protocol,
will be done systematically, with the goals of achieving energy
efficiency while maintaining reliable data transmission (i.e.,
meeting the application’s bandwidth requirements). While part
of this work has been previously presented in our earlier work
[1], the current paper significantly extends [1] in order to make
the health-monitoring BSN-based system more comprehen-
sive, via three key aspects. Firstly, the TSCH slotframe length
is determined to accommodate the minimum requirements for
different sending rates. Secondly, the number of timeslots to
be added or removed for each sensor is evaluated in case it
increases or decreases its sending rate according to detected
user behaviors. This is a non-trivial problem as allocating the
exact amount of requested bandwidth to sensors could easily
exceed the maximum supported bandwidth of the system,
if some high-priority sensors generate too many data. The
proposed scheme can account for such an overload scenario,
by considering several factors such as individual sensors’
sending rates and overall system fairness, to decide on the most
appropriate timeslot allocation. Finally, the actual placement
of the extra timeslots in the TSCH slotframe is dealt with via
an equally spaced timeslot allocation algorithm, to achieve a
smooth sensor data stream to the gateway.

In order to quickly respond to real-time changes in user
behaviors, some of the data processing and decision making
tasks could be done at or nearby the sources of data (i.e.,
sensor nodes) rather than in the remote cloud. This approach is
aligned with the emerging edge computing—the next evolution
of computing paradigm, which brings computation, storage
resources to the edge of the networks [15]. In the proposed
system, we will adopt this principle, by placing a user behavior
classifier right at the gateway device for extracting knowledge
from the application layer. Based on this real-time knowledge,

1Henceforth, we use “human/user activities” and “user behaviors” inter-
changeably

MAC scheduling decision can be made without sending data
to the cloud which could incur long delays, hogging of
bandwidth, and waste of power. As a result, the proposed
system is capable of not only effectively monitor users in real
time, but also reducing network latency and saving bandwidth
and power.

Overall, our proposed approach constitutes a cross-layer so-
lution, exploiting the detected user behaviors at the application
layer in order to automatically change the sensors’ sampling
rates and perform dynamic scheduling in the TSCH MAC layer
simultaneously. We present an end-to-end system architecture
and build a testbed to evaluate the performance of the proposed
scheme. Our testbed features BSN nodes and a gateway using
Contiki-OS on the OpenMote-CC2538 platform. Notably, we
employ edge computing design principles by placing the data
processing and decision making tasks right at the gateway
device. In summary, our main contributions in this paper are
as follows.
• Present an end-to-end BSN system based on TSCH for

healthcare monitoring, which is first in deploying TSCH
for such a high data-rate application.

• Propose an adaptive MAC scheduling scheme for TSCH
which employs a cross-layer approach, i.e., leveraging
detected user behaviors at application layer to dynam-
ically adjust sensor’s sampling rates, then rescheduling
TSCH timeslots accordingly while maintaining fairness
and bandwidth requirement.

• Develop a testbed to implement and evaluate the proposed
scheme against existing techniques, in terms of through-
put, packet delivery ratio, and energy per bit. Results
demonstrate that our cross-layer solution ensures reliable
data transmission and energy efficiency.

The rest of the paper is organized as follows. Section II
reviews existing work in adaptive MAC scheduling schemes
for wireless sensor networks (WSNs). In Section III, we
present an overall architecture for the healthcare monitoring
system. The adaptive MAC scheduling scheme is described in
Section IV. Experimental setup is presented in Section V-A,
with the corresponding results shown in Section V-B. Finally,
the conclusion is in Section VI.

II. RELATED WORK

MAC protocols of IEEE 802.15.4 standard [6] are cat-
egorized into contention-based and schedule-based. For
contention-based MAC scheduling, there have recently been
notable works which applied machine learning techniques,
e.g., Q-leaning method for adaptation of radio sleep-wakeup
scheduling to network traffic conditions [16], [17]. This section
will nevertheless focus on schedule-based MAC-scheduling, or
in particular, the adaptive TSCH protocols in BSNs and WSNs,
due to the fact that TSCH protocol shows advantages over
contention-based protocols in applications such as healthcare
as aforementioned. In fact, the adaptive MAC scheduling
schemes based on TSCH protocol can be categorized into
decentralized and centralized ones.

Decentralized MAC scheduling schemes were investigated
in [9], [11], [18]–[20]. Morell et al. [18] adopted the technique
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of multi-protocol label switching (MPLS) to WSN, then pro-
posed an adaptive MAC scheduler based on the bandwidth,
latency, and power requirements of each sensor. Accettura et
al. [11] proposed decentralized traffic-aware scheduling for the
TSCH protocol in multi-hop WSNs. However, this approach
faces significant overheads for updating traffic information
of each sensor, and has to reschedule the whole network
when a new node joins or the traffic load of a node changes.
Duquennoy et al. [19] proposed a decentralized TSCH-MAC
scheduling scheme called Orchestra for multi-hop industrial
WSNs. Peng et al. [20] proposed an adaptive TSCH (A-
TSCH) that uses three dedicated timeslots per slotframe for
detecting blacklist channels, resulting in reducing bandwidth
of the whole BSN. Palattella et al. [9] proposed a decen-
tralized TSCH scheduling scheme for adapting scheduled
bandwidth to network traffic requirements. However, these
above approaches did not work well for BSNs which support
dynamic network traffic loads because reservation bandwidths
for multiple sensors simultaneously in a decentralized manner
results in high collisions.

Some centralized MAC schedulers were investigated in [10],
[21], [22]. Palattella et al. [10] proposed a centralized traffic-
aware TSCH scheduling scheme that uses graph coloring
techniques to allocate timeslots and channels for a multi-hop
WSNs. However, this scheme is unsuitable for adaptive send-
ing rates because the whole slotframe needs to be appropriately
reallocated even if only one sensor changes its sending rate,
which can disturb the other sensors. Choi et al. [21] proposed
a centralized TSCH scheduler that reduces overhead of control
messages, and avoids rescheduling the entire slotframe when
allocating and deallocating timeslots. Jin et al. [22] developed
a centralized MAC scheduler for TSCH to allocate as many
timeslots in a slotframe as possible, aiming to achieve low
latency in multi-hop WSNs. However, it allocates too many
backup timeslots, leading to the problem of resource hogging.

A. Comparison with our work

These previous works focus on multi-hop WSNs while not
paying attention to the dynamic sampling and adaptive sending
rates of the BSN. They are therefore not suitable for BSNs
with a star topology in which frequency diversity is hard to
exploit. In addition, these approaches incur overheads of re-
porting bandwidth requirements from sensors to gateway, and
cannot proactively allocate enough bandwidth right after the
sensors switch to sample higher rates and then send at higher
sending rates. Moreover, the above works did not address the
case of the traffic demand exceeding the network bandwidth
capacity. Although few works [9], [10], [22] consider adaptive
sending rates, they do not proactively adapt to the network
traffic loads generated by the adaptive sampling rate mech-
anism. Instead of assuming that we know in advance traffic
information (e.g., bandwidth requirements) as [9]–[11], our
cross-layer approach with the information from the application
layer (i.e., user behavior) can proactively change the sensors
sampling rates, and dynamically allocate MAC scheduling
scheme to adapt with the network traffic demands. In addition,
with the cross-layer approach, we can reduce overhead of

control message for reporting traffic information from sensor
nodes since the gateway already has holistic statistical infor-
mation of the BSN. Overall, our approach fills the existing
gap left by current works in the literature by presenting an
end-to-end BSN system for healthcare application, employing
a cross-layer MAC scheduling approach that can automatically
adjust the sensor sampling rates and dynamically allocate an
appropriate number of timeslots for requesting sensors, based
on the requirements from the application layer (i.e., detected
user behaviors). This approach has not been considered by
existing works, to the best of our knowledge.

III. USER BEHAVIOR DRIVEN HEALTH-MONITORING
SYSTEM

Fig. 1a shows the software architecture of the health-
monitoring system, which consists of three main parts: a BSN
with star topology, a gateway, and a server.

The BSN, which may correspond to an individual patient
whose conditions are being monitored, consists of several
healthcare sensors connected to a gateway device via one-
hop communication. The wearable sensors periodically sample
the physiological signals of the wearer, such as ECG, heart
rate, blood pressure, body temperature, activity, and oxygen
saturation (SpO2), and then send the data to the gateway using
low-power wireless communications, such as IEEE 802.15.4.

The gateway normally possesses greater storage and pro-
cessing power than sensor devices. The gateway receives raw
sampled data from all sensors at the border-router via a
serial line Internet protocol (SLIP) interface. The raw sampled
data, which is passed through the tun-slip-ipv6 module [23]
and is parsed to readable format by the gateway-parser, can
be analyzed at the health-monitoring module, stored in the
database, or forwarded to the server (which happens only if
the gateway is charging). At the health-monitoring module, the
user behavior classifier automatically detects user behaviors
in the form of human activities. If the detected user behavior
is changed, e.g., from a normal to a high-risk activity, the
manager module issues instructions to the border router with
a combined decision that consists of new sampling rates and
numbers of timeslots to be added/removed for the appropriate
sensors based on their new required bandwidths (Section
IV-C). From the number of timeslots to be added/removed, the
border-router chooses actual allocated timeslots by using an
equally spaced timeslot allocation algorithm (Section IV-D).
Then, the border-router cooperates with the sensors to change
their sampling rates; and the MAC scheduler module at the
border router cooperates with the MAC scheduler-S modules at
the sensors to add or remove timeslots. In summary, to provide
the required bandwidths, the gateway employs a cross-layer
approach using the user behaviors extracted from application
layer as a driven input to an adaptive MAC scheduler located
right on top of the IEEE 802.15.4-TSCH MAC layer, as shown
in Fig. 1b.

The server is used for building the user behavior classifier
as a machine learning model based on our collected data, and
analyzing the network performance. The details of training the
machine learning model is presented in Section V-A4.
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Fig. 1. (a) System software architecture, and (b) the TSCH protocol stack incorporating our cross-layer approach for user behavior driven health-monitoring
system.

In traditional BSN-based and other IoT systems, sensory
data analysis is typically done in the remote cloud. How-
ever, in the present BSN system for healthcare monitoring,
there are emergency situations which require decisions to be
responded promptly. To tackle this requirement, we employ
edge computing’s design principles. Specifically, the decision
making modules (i.e., manager and user behavior classifier
modules) are placed in the gateway device, right next to the
sensor devices. This will allow for real-time detection of user
behaviors without sending data back to the remote cloud.
Subsequently, MAC scheduling decision can also be made
simultaneously without incurring long delays. Therefore, the
system can respond quickly to changes in user behaviors and
ensure reliable transfer of sensor data in emergency situations.

IV. ADAPTIVE MAC SCHEDULING SCHEME

To save energy for BSNs in healthcare applications, we
propose a user behavior driven MAC scheduling scheme, in
conjunction with a dynamic sensor sampling rate mechanism,
to adapt the required bandwidths of some sensors that increase
or decrease their sending rates while ensuring reliable com-
munications for all sensors (i.e., including sensors that do not
change their sampling rates). Our MAC scheduling scheme is
based on the time-slotted channel hopping (TSCH) protocol
of IEEE 802.15.4 [6].

A. TSCH - Time Slotted Channel Hopping

In the TSCH protocol of IEEE 802.15.4, all nodes syn-
chronize on a periodic slotframe which contains a number of
timeslots. A timeslot can be assigned to a pair of transmitting
and receiving nodes. A TSCH link between two nodes is
described by two parameters: timeslot index in the slotframe
and a channel offset that results in different communication
frequency in the frequency hopping list. Fig. 2 shows an
example of allocating timeslots to the border-router and three
sensor nodes. There are two type of links – downlink and
uplink. In a downlink timeslot, the border-router sends control
packets to one destination sensor among associated sensors.
In an uplink timeslot, the sensor node sends data packets to
the border-router. There are two type of uplinks – dedicated
and shared uplinks. The dedicated uplink is allocated to a
single sender-receiver pair at a timeslot (i.e., contention-free);
whereas the shared uplink is allocated to multiple senders

transmitting to a receiver (i.e., contention-based with back-off
mechanism). Fig. 2 presents an example of adding dedicated
uplinks from sensor 3 to the border-router, which are denoted
as TX with an arrow below, instead of TX(S) for a shared
uplink initially allocated based on the sensor’s MAC address
when joining the network.

B. Slotframe Length

In the TSCH-based BSN, all sensors and the border-router
are set up with the same slotframe length that is not changed
during deployment. Hence, the system designers need to
choose the slotframe length (denoted by |SF|) carefully accord-
ing to the sending rate of each sensor. Consider a BSN that
consists of N sensors under K different user behaviors (e.g.,
normal, urgent behaviors) which correspond with K sending
rates, i.e., sik, where i ∈ {1, . . . , N} and k ∈ {1, . . . ,K}.
Let us denote s∗i = min

k
{sik} as the minimum sending rate

of sensor i under all user behaviors, which is also the initial
sending rate of sensor i in the normal behavior. We denote
NSF as the number of slotframes repeated per second given
by

NSF =
1

|SF| · |TS|
, (1)

where |TS| is timeslot duration in seconds. We set |TS|=10 ms
as per the recommendation of IEEE 802.15.4 [6]. The original
TSCH scheme allocates only one timeslot per slotframe to
a sensor, so that the maximum sending rate of the sensor
is not higher than the number of slotframes repeated per
second. In addition, if NSF is high enough to support the
sensor with maximum sending rate, i.e., NSF ≥ max

i
(s∗i ), then

the other sensors with lower sending rates are also supported
automatically. Hence, the constraint of slotframe length is
given by

|SF| ≤ 1

max
i

(s∗i ) · |TS|
. (2)

We set |SF| equal to the upper bound for the flexibility of
future allocation when the BSN requires more bandwidth, and
reducing wake-up time of the transceivers at the allocated
timeslots without sending data packet.
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Slotframe length |SF| = 17 timeslots

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS1 TS2 TS3   …   

Sensor 1

Sensor 2

Sensor 3

Border-
router

Timeslot |TS| = 10 ms

extra timeslot

Fig. 2. Allocation of timeslots in a TSCH slotframe to sensors with equal space extra timeslot algorithm. The timeslot with an arrow below denotes the extra
timeslot in a high-risk activity.

C. Determination of the Number of Timeslots

Suppose at a given time, each sensor i under a user behavior
k has been allocated Nik timeslots per slotframe. Let Nfree,k be
the total number of available (unused) timeslots in a slotframe
at the user behavior k, which is given by

Nfree,k = |SF| − (

N∑
i=1

Nik + 1), (3)

where (
∑N

i=1Nik + 1) is the total number of timeslots
allocated to N associated sensors (uplinks) and the border-
router (downlink). If the BSN already utilizes all timeslots,
i.e., Nfree,k = 0, the system rejects any request for more
timeslots. Otherwise, i.e., Nfree,k > 0, the system allocates
extra timeslots as follows.

Suppose the BSN changes from the user behavior k to k′,
and the manager module at the gateway (refer to Fig. 1a)
changes the sensors’ sending rates from sik to sik′ . Note that,
there is no action required for the sensors that do not change
their sending rates. We hence consider that sensor i either
increases or decreases its sending rate.
• In the decreasing sending rate case, i.e., Nik′ < Nik,

we will release a number of timeslots to the pool of the
available timeslots, i.e., Nik′,remove = Nik −Nik′ .

• In the increasing sending rate case, i.e., Nik′ > Nik,
we need to allocate extra timeslots to sensor i, the
number of which depends on the constraint of total
available timeslots given by eq. (3), as well as fairness
consideration, as follows.

Among all N sensors, as only a certain number of them
increase their sending rates, we use l to denote the indices
for these sensors, i.e., slk′ > slk, l ∈ {1, . . . , L} and L ≤ N .
Let Nlk′,add denote the required number of extra timeslots for
sensor l under user behavior k′. We further categorize the
timeslot allocation process into two cases, as follows.

If the total timeslots to be added do not exceed the system’s
resource capacity, i.e.,

∑L
l=1Nlk′,add ≤ Nfree,k, all requesting

sensors are given their number of required timeslots, i.e.,

Nlk′,add =

⌈
slk′

NSF

⌉
−Nlk, ∀l ∈ {1, . . . , L}. (4)

Any remaining timeslots will be available for future requests
in case of either a higher-risk user behavior occurring, or when
a new sensor joins the BSN.

If the total timeslots to be added exceed the system’s
resource capacity, which is also called the request overload
regime, i.e.,

∑L
l=1Nlk′,add > Nfree,k > 0, not all requests

can be satisfied. In such a case, we would like to maintain
fairness among all sensors with increasing sending rates to
make sure that resources are distributed evenly across the
sensors. To this end, we propose a way to determine the
number of extra timeslots for each requesting sensor that aims
to achieve approximately identical ratios rlk′ between real and
ideal throughputs among these sensors. Here, throughput is
defined as the total number of bits successfully transmitted
per second (see also Sec. V-A2). Specifically, the throughput
ratio is given as

rlk′ =
TP real

lk′

TP ideal
lk′

=
N∗lk′ ·NSF ·D

slk′ ·D
=
N∗lk′ ·NSF

slk′
, (5)

where TP real
lk′ , and TP ideal

lk′ are the actual achievable throughput
after timestlot allocation, and the ideal throughput assuming
the required number of extra timeslots can be met, respec-
tively; N∗lk′ is the actual number of allocated timeslots (after
allocation); and D is the size of a data packet in bits.

Inspired by Jain’s fairness index [24], we introduce the
fairness index F to quantify the fairness of our allocation
mechanism in the request overload regime, where

F ({rlk′}) =
(
∑L

l=0 rlk′)
2

L ·
∑L

l=1 rlk′
2
. (6)

The closer to 1 the fairness index F (an index of 1 is
achieved by making all rlk′ identical), the fairer the allocation
among the requesting sensors. Thus, in the request overload
regime, as we try to achieve the highest fairness index, the
throughput ratios of the requesting sensors should be made
similar according to the following condition:

N∗1k′

s1k′
≈ · · · ≈ N∗Lk′

sLk′
≈
∑L

l=1N
∗
lk′∑L

l=1 slk′
=
Nfree,k +

∑L
l=1Nlk∑L

l=1 slk′
.

(7)
The last equality of eq. (7) suggests that the sum of all the
number of allocated timeslots to sensors in request overload
regime is capped at the system’s maximum capacity. From eq.
(7), the new total number of allocated timeslots for sensor l
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ALGORITHM 1: Equally spaced timeslot allocation
Data: tl,cur, Nlk′,add, |SF|
Result: S // set of timeslots to be allocated

1 S ← ∅; step←
⌊

|SF|
Nlk′,add

⌋
; ttem ← tl,cur; u← 0;

2 while |S| < Nlk′,add & u < |SF| do
3 ttem ← (ttem + step) mod |SF|;
4 if ttem is available then
5 S ← ttem;
6 else
7 m← 0;
8 while m < step do
9 tneighbor ← (ttem ±m) mod |SF|;

10 if tneighbor is available then
11 S ← tneighbor;
12 break;
13 end
14 m← m+ 1;
15 end
16 end
17 u← u+ 1;
18 end

under the new user behavior k′ is given by

N∗lk′ = No
lk′ + δlk′ , where (8)

No
lk′ = max

{
Nlk,

⌊
(Nfree,k +

∑L
l=1Nlk) · slk′∑L

l=1 slk′

⌋}
. (9)

After allocating to all requesting sensors as in eq. (9),
if there are still some available timeslots remaining, i.e.,
Nfree,k′ +

∑L
l=1Nlk −

∑L
l=1N

o
lk′ > 0, then we distribute

these remaining timeslots among the requesting sensors in
descending order of the sending rates. Hence, in eq. (8), the
term δlk′ ∈ {0, 1} indicates whether an extra timeslot is given
to sensor l or not. Finally, the actual number of extra timeslots
is given by Nlk′,add = N∗lk′−Nlk, l ∈ {1, . . . , L}. Note that as
N∗lk′ ≥ Nlk, the new allocation does not decrease bandwidth
of the sensors that increase their sending rates.

D. Equally Spaced Timeslot Allocation Algorithm

In the previous sections, we specify how many extra times-
lots Nlk′,add should be allocated for the sensor l at the new
behavior k′. In this section, we present an equally spaced
timeslot allocation algorithm to specify the exact placement,
i.e., which timeslot indices for these timeslots, to provide a
smooth sensor data stream to the gateway and the health-
monitoring module.

Algorithm 1 describes the details of the timeslot allocation
process. The equally spaced timeslot allocation algorithm is
not trivial because the allocation has to consider sensor l’s
new placement in relation to its own existing timeslots and
the other sensors’. The inputs of the algorithm are tl,cur which
is the index of the pre-scheduled timeslot in TSCH slotframe
currently dedicated to the sensor node l, Nlk′,add which is the
required number of extra timeslots, and |SF|. The allocation
attempts to select new timeslots that altogether are equally
spaced, relative to the pre-scheduled timeslot, which can be
done easily if the allocated timeslots is free as shown in lines
3 – 5. However, when a chosen timeslot is occupied, we

carefully select the nearest available timeslot (i.e., at either
some upper or lower index away from the initially attempted
timeslot) as shown in lines 6 – 15. Fig. 2 gives an example
of the allocation for sensor 3 in the TSCH slotframe with
|SF| = 17 timeslots. As in Fig. 2, the current timeslot of sensor
3 is TS10, i.e., tl,cur = 10, and it requires to allocate four extra
timeslots, i.e., Nl,add = 4. The output of the Algorithm 1
is S = {14, 2, 5}, i.e., TS14, TS2, TS5 as shown in Fig. 2
with red arrows below. The complexity of Algorithm 1 is
O(|SF|2/Nlk′,add).

E. Cross-layer Adaptive MAC Scheduling Scheme

Combining all the previous subsections, we present a cross-
layer adaptive MAC scheduling scheme based on user be-
havior. In the normal activity, the sensors sample at the
normal sampling rates, and send with the normal sending
rates. When the health-monitoring module detects a high-risk
activity, it generates an “emergency” signal to the border-
router which includes the following information: (i) list of
the emergency sensors, (ii) their new sampling rates slk′ , and
(iii) the appropriate number of extra timeslots Nlk′,add that
needs to be allocated to them, presented in Section IV-C.
Based on this information, the MAC scheduler at the border-
router runs the equally spaced timeslot algorithm procedure
given by Algorithm 1 to find a set of extra timeslots for the
emergency sensors. Subsequently, the border-router adds the
RX timeslots to itself, and sends a control signal to each of
these sensors with the following parameters: signal type (i.e.,
add or remove), new sampling rate slk′ , and set of added
(or removed) timeslots. Once the emergency sensor l gets the
control signal, it adds the TX timeslots (by MAC scheduler-S
module), increases its sampling rate to the new value slk′ , and
acknowledges the border-router in a piggy-back fashion.

When the high-risk activity is over, the emergency sensors
reduce their sending rates to the original values, remove
the extra TX timeslots, and inform the border-router about
this change. Consequently, the border-router removes the ap-
propriate RX timeslots to release these timeslots for future
allocation.

V. PERFORMANCE EVALUATION

A. Experimental setup

1) Testbed and Evaluation Scenarios: Consider a health-
care scenario that a heart disease patient is undergoing cardiac
rehabilitation. The health-monitoring BSN for the patient
consists of three sensors and a gateway as shown in Fig. 3.

We consider three different types of sensors: accelerometer
(ADXL346), temperature and humidity (SHT21), and ECG
sensor plugged into a SparkFun AD8232 board. These sensors
use the OpenMote-CC25382 platform as the radio communi-
cation module.

Raspberry-Pi 3 is used as the gateway which handles several
tasks such as collecting sensor data, processing, storing data
locally, and making a decision of simultaneously changing
sampling rate and adjusting network bandwidth accordingly.

2www.openmote.com
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Fig. 3. Experimental testbed of the BSN.

The sensors are connected to the gateway via the border-router
which is another OpenMote-CC2538 platform plugged into the
gateway via serial connection. The sensors and border-router
use the operating system Contiki OS [23] for programming,
and TSCH for the MAC layer and (RPL + 6LowPAN) for the
network layer (see Fig. 1b). We modify the tunslip6 module
in the Contiki OS to handle triggering commands from the
application running on the gateway to the MAC scheduler
module running on the border-router (refer to Fig. 1a).

We will evaluate the BSN system under different user
behaviors that map to different user activities and the sensors’
sending rates, which are given in Table I. In each row of Ta-
ble I which describes each user behavior, each sensor samples
data at a frequency f (Hz) which in turn sends fixed-size data
packets at a sending rate s (packet/s) to the gateway. Note
that the frequency f is higher than the sending rate s; hence,
each sensor must store raw sampled data in a buffer, then
only send a data packet if the size of accumulative sampled
sensor data reaches the size of the sensor’s sending packet.
Specifically, the packet size3 of accelerometer, temperature,
and ECG sensors are 115 bytes, 63 bytes, and 83 bytes,
respectively. In monitoring a heart disease patient, we let the
accelerometer and ECG sensors sample at a low rate when the
patient’s behaviors are normal (e.g., while sitting or standing).
However, when the patient exercises more vigorous activities,
with higher risk of a cardiac event (e.g., walking and running,
sub-divided into urgent-medium and urgent-high behaviors,
respectively), the sensors switch to higher sampling rates,
obtaining higher-resolution data for more complex analysis.

In addition, we conducted separate experiments in the
request overload regime as given in the last row in Table I. In
these experiments, the user changes from the normal behavior
to the “overload-regime” (by a manual trigger at the border-
router) that samples extremely high sampling rates4 generating
extremely high traffic loads which overload the bandwidth
capacities of the BSN.

3The packet size includes sensor data size and network header size (i.e.,
6LowPAN header).

4In the implementation, due to hardware limitation on the sampling rate
for the three sensors, when their desired sampling rates exceed the sensor’s
capability (as marked * in Table I), we send dummy packets having the same
length as the usual packet to measure network performance.

TABLE I
USER BEHAVIOR PROFILES WITH SAMPLING RATE f (HZ) AND SENDING

RATE s (PACKET/S)

User behavior User activity Accelerometer Temperature ECG
f s f s f s

Normal Sitting/Standing 32 4 2 1 64 2
Urgent-medium Walking 64 8 4 2 512 16
Urgent-high Running 128 16 8 4 1024 32

Overload regime Manual trigger 256∗ 32 32∗ 32 2048* 64

2) Performance Metrics: We use the following metrics to
evaluate the performance of the BSN.

Packet delivery ratio (PDR) is an indicator for the network
reliability. PDR is defined as the fraction of data packets
successfully delivered from the sensor nodes to the gateway,
i.e., PDR = C∗P/CP, where CP and C∗P be the total number
of transmitted data packets and the number of successfully
delivered data packets, respectively.

Throughput (TP ) is the number of information bits for-
warded successfully from the source to the targeted destination
per unit of time, i.e., TP = (C∗P ·D)/t.

Energy-per-bit (EPB) is the ratio of the communication
power consumption P to the throughput TP , i.e., EPB =
P/TP , which measures the energy efficiency of the trans-
mission and is measured by joule/bit. The communication
power consumption P is defined as the averaged power
consumption in mW of the sensor node across four power
states: transmission (TX) state, listening (RX) state, CPU
active state, and low-power mode (LPM) state [8], [25]. The
power consumption is given by

P =
V (tTXITX + tRXIRX + tCPUICPU + tLPMILPM)

tCPU + tLPM
, (10)

where ITX = 24.0mA, IRX = 20.0mA, ICPU = 7.0mA,
and ILPM = 0.04mA are the average rated currents of the
respective states which are obtained from data sheet of SoC
Texas Instrument CC25385. The average voltage V = 3V.
Also, tTX, tRX, tCPU, and tLPM are the elapsed time of these
appropriate power states. In order to measure the elapsed time
of different power state, we use the Contiki Powertrace [25]
built-in power profile.

3) Comparison of MAC Scheduling Schemes: In order to
evaluate the network performance, we implement the follow-
ing three scheduling schemes:

Orchestra scheme [19] allocates a bidirectional link be-
tween a sensor and the border-router. For example, as shown
in Fig. 2, the downlink and uplink between sensor 1 and the
border-router are allocated at TS1 and TS6, respectively. In
order to reduce transmission collision between the associated
sensors, we deliberately choose the sensors with different last
byte of MAC addresses, which creates uplinks from sensors
to the gateway at different timeslots. The Orchestra scheme is
the baseline of the following two schemes.

Static scheme uniformly allocates all timeslots in a slot-
frame to all associated sensors in dedicated-timeslot fashion
at initialization of the BSN; and all the allocated timeslots are

5http://www.ti.com/lit/ds/symlink/cc2538.pdf
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fixed after the initial allocation. Specifically, each sensor is first
allocated with

⌊
|SF|−1

N

⌋
timeslots. The remaining timeslots are

randomly allocated to some sensors in the BSN.
Proposed scheme is a dynamic timeslot allocation scheme

in which each sensor adds/removes an appropriate number
of extra dedicated timeslots based on the required bandwidth
when a high-risk activity occurs/finishes, which is described
in Section IV. To build the proposed scheme, we inherit
the implementation of TSCH, and the Orchestra scheduling
scheme of the Contiki OS, and build a thin layer on top of the
TSCH (refer to Fig. 1b) to add, remove extra timeslots based
on instructions from the border-router (which gets from the
application layer at the gateway).

In our experiments, we chose a common slotframe length
of all mentioned schemes for a fair comparison purpose. Ac-
cording to the Orchestra scheduling scheme [19], the slotframe
length is a prime number. Based on the sending rates given
in Table I, we select the largest prime number in the range of
slotframe length defined in eq. (2), i.e., |SF| = 23 timeslots.

4) User Behavior Classifier: In order to build a classifier
for detecting user behaviors (i.e., HAR), we perform the
following steps:

Sensor Data Collection: The triaxial accelerometer sensor
is worn on the left wrist of the user via a strapped band,
and samples at a frequency of 32 Hz which is similar to
[12]. Data was collected for each of the four activities (i.e.,
sitting, standing, walking, and running) on two male adults of
average build. Each activity was performed for 5 minutes with
precisely recorded timestamps, which are used for labeling.
The dataset contains 76800 samples with each sample having
3 dimensions.

Feature Extraction: Data samples of the same dimension
are grouped into a two-second window [1], [13] that is not
too long but also not too short to capture enough feature data
for human activities. Two consecutive windows overlap by
50%. Then, we carry out the feature extraction with a set of
basic statical features [12], [13]: minimum, maximum, mean,
variance, skewness and kurtosis, which are computed across
all samples in each window.

Training Machine Learning Models: The following tra-
ditional machine learning algorithms6 are utilized: support
vector machine (SVM), decision tree, Gaussian naive Bayes
(GNB). We follow the standard practice of dividing the entire
data set into a training set (70%) and a test set (30%) via
random sampling. We use the library scikit-learn [26] in
Python to implement these machine learning models. The
accuracy of the decision tree model is 99.50% while that of the
SVM and GNB models are 98.63% and 98.10%, respectively.
Based on the empirical results, in subsequent experiments we
use the decision tree model for classification.

In order to make reproducible experimental results, we re-
play the collected data (3 minutes for each activity) with three
consecutive activities, i.e., standing, walking, and running, to
trigger the change of user behavior. Note that the machine
learning model was trained with the normal sampling rate;

6It is worth to mention that which machine learning model and which
feature selection we use are not the novel parts of this paper.

however, the system running in the urgent behaviors get the
higher-resolution input data. In this work, we simply down
sample input data to the normal sampling rate before feeding
it to the classifier. The higher-resolution data is stored in the
database and analyzed offline for further studying.

B. Experimental Results

We evaluate the health-monitoring BSN under different user
behaviors in term of throughput, PDR, and EBP. The mea-
surement results of these 3 metrics are obtained and shown in
Figs. 4, 5, and 6, respectively. Note also that all measurements
for accelerometer, temperature, and ECG sensors are grouped
together in columns (a), (b), and (c), respectively; and all
are plotted against different behavior profiles (normal, urgent-
medium, etc.).

We first look at the results for throughput. At first glance,
Fig. 4 shows that throughput generally increases as behav-
ior shifts from normal to urgent-medium, urgent-high, and
towards the request overload regime. An exception is the Or-
chestra scheme, whose throughput level gets saturated despite
changing sending rates due to its non-adaptive scheduling. As
such, it cannot support high-throughput BSN. Recall that the
static scheme is a greedy method and uses up all timeslots, so
it allocates way more timeslots than necessary in the low traffic
load (e.g., the normal, urgent-medium behaviors). Therefore,
in contrast to the Orchestra scheme, the static scheme is
expected to achieve the highest level of throughput (and PDR
as well), but at the cost of higher energy consumption. This
explains why the static scheme outperforms the Orchestra
scheme in terms of throughput as shown in Figs. 4a, 4c
(and PDR as well, as shown later on). Nevertheless, in nor-
mal, urgent-medium, and urgent-high behaviors, our proposed
scheme can achieve throughput as high as, or even better than
the static scheme. For instance, in Fig. 4c for ECG sensor
under urgent-high behavior, the proposed scheme’s throughput
(15.7 kbps) is 5.7% higher than that of the static scheme
(14.8 kbps); and in terms of total throughput, the proposed
scheme (31.7 kbps) is also ahead of the static scheme (30.7
kbps). Moreover, our scheme can deliver it with better energy
efficiency, as shown later on. Next, under the request overload
regime, there is an observable difference between proposed and
static schemes in the way they allocate throughput to different
sensors, i.e., the proposed scheme allocates lower throughput
for accelerometer and temperature sensors with sending rates
32 packets/s than the static scheme, but higher throughput for
ECG sensor with a higher sending rate 64 packets/s. This is
partly explained by the fact that the proposed scheme tries
to satisfy sending rate requirements and fairness, which will
be reflected by a higher fairness index as presented later on.
Furthermore, the proposed scheme’s total throughput in this
regime is approximately 15% more than the static scheme’s.

Fig. 5 shows PDRs of the three evaluated schemes un-
der different user behaviors. As opposed to throughput, we
observe a decreasing trend in PDR across different behav-
iors corresponding to increasing sending rates, although the
trend is not the same for different sensors and schemes. For
Orchestra scheme without high data rate support, its PDR
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Fig. 4. Throughput of (a) accelerometer, (b) temperature, and (c) ECG sensors of the evaluated schemes under different user behaviors.
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Fig. 5. PDR of (a) accelerometer, (b) temperature, and (c) ECG sensors of the evaluated schemes under different user behaviors.

is significantly worsened especially for sensors with high
sending rates (i.e., for accelerometer and ECG, its PDR drops
from 100% in normal behavior to below 15% in urgent-high
behavior). Temperature sensor with much lower sending rate,
on the other hand, can maintain good PDR (nearly 100%)
for all evaluated schemes. Between the static and proposed
schemes, measurements suggest no significant difference in
the obtained PDR. Specifically, for accelerometer sensor, the
static scheme’s PDRs are 100%(±0%), 99.92%(±0.33%), and
95.84%(±4.5%)7 under normal, urgent-medium, and urgent-
high behaviors, respectively. For the proposed schemes, the
corresponding numbers are 100%(±0%), 99.78%(±0.55%),
and 95.92%(±2.88%), respectively. Similar numbers are ob-
tained for ECG sensor, which shows no major differences
in PDR. Nevertheless, to the proposed scheme’s advantage,
it allows for adding more sensors after deployment without
causing transmission collisions and PDR degradation, while
the static scheme is unable to support this because of its
fixed timeslot allocation. Lastly, under the request overload
regime, the proposed scheme is seen to achieve approximately
the same PDRs for all three sensors as a result of fairness
allocation in this regime.

Fig. 6 demonstrates that the EPBs of the three sensors
decrease when increasing their sending rates. For the normal,
urgent-medium, and urgent-high behaviors, noticeably, the
proposed scheme always spends much less energy to send a
bit compared to the static scheme, which results in longer
battery life if we account for a longer period of usage.
Moreover, the proposed scheme can achieve EPBs comparable

7These are mean values with standard deviations in brackets.

to Orchestra’s, at the same time outperforming Orchestra in
throughput and PDR. For instance, the EPBs of accelerometer
sensor for the proposed scheme under normal, urgent-medium,
and urgent-high behaviors are 0.52 mJ/b, 0.42 mJ/b, and 0.36
mJ/b, respectively, while those of Orchestra are 0.52 mJ/b,
0.36 mJ/b, and 0.29 mJ/b, respectively. Under the request
overload regime, the proposed scheme also achieves better
energy efficiency than the static scheme for all three sensors.
That is, the EPBs of accelerometer, temperature, and ECG
sensors for the proposed scheme are approximately 21%, 12%,
and 35% less than those of the static scheme, respectively.

Finally, in the request overload regime, since all the re-
questing sensors cannot satisfy their required sending rates,
the fairness index provides a better performance indicator as
discussed in Section IV-C. According to eq. (4), the required
number of extra timeslots for the accelerometer, temperature,
and ECG sensors are 6, 6 and 12 timeslots, respectively.
However, the total of these numbers exceeds the available extra
timeslots given by Nfree = 23 − 4 = 19 timeslots. Therefore,
by applying the fairness allocation mechanism, we obtain
NAccelerometer,add = 4, NTemperature,add = 4, and NECG,add = 11
timeslots. Subsequently, Table II shows the actual throughputs
and throughput ratios for the static and proposed schemes
under the request overload regime. According to eq. (6), we
can calculate the fairness index of the proposed scheme as
Fproposed = 0.997, which is significantly higher than that of
the static scheme Fstatic = 0.913. This result verifies that
the proposed scheme achieves close-to-optimal fairness across
different sensors under the request overload regime.

In summary, the proposed scheme with adaptive MAC
scheduling scheme driven by user behaviors can adapt to the
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Fig. 6. Energy-per-bit of (a) accelerometer, (b) temperature, and (c) ECG sensors of the evaluated schemes under different user behaviors.

TABLE II
THROUGHPUT (BPS) AND THROUGHPUT RATIO (r) OF THE THREE

SENSORS UNDER THE REQUEST OVERLOAD REGIME

Accelerometer Temperature ECG

Ideal 29440.00 16128.00 42496.00
Static 24432.05 11573.40 15780.49
Proposed 18271.92 10240.26 23730.14

rstatic 0.623146 0.702398 0.311892
rproposed 0.536906 0.514845 0.468485

dynamic traffic loads, provides an energy efficiency and reli-
able communication (i.e., high throughput, and PDR) solution
for healthcare applications under the evaluated behaviors, and
achieves fairness among the emergency sensors (regarding
throughput and PDR) under the request overload regime.

VI. CONCLUSION

This paper proposed an adaptive user-behavior-driven cross-
layer MAC scheduling scheme in order to address the joint
challenge of transmission reliability and energy efficiency
in BSN, and built a comprehensive health-monitoring BSN
testbed to evaluate its performance. We determined the TSCH
slotframe length, the numbers of extra timeslots for applica-
tions with dynamic sampling and sending rates, then proposed
the equally spaced timeslot allocation algorithm as part of our
adaptive MAC scheduling scheme. Our experimental results
showed that the proposed scheme can jointly achieve reliable
transmission and low energy-efficiency in compared to the
Orchestra and static schemes for the BSN with dynamic traffic
loads. When there is an overload of requests, the proposed
scheme obtains better fairness among the requesting sensors,
and better PDR and EPB than other schemes. In the future,
we would consider scheduling for multiple BSNs co-located
in the vicinity of each other, which introduces significant co-
channel interference. In such a scenario, frequency diversity
could be leveraged by taking into account both timeslot indices
and channel offset to provide reliable communication.
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